
 Sign UpLog InCommunity Tutorials Questions Projects Meetups Search�

Justin Ellingwood � Subscribe Share

124

 How To Use Systemctl to Manage Systemd
Services and Units
Posted February 1, 2015 � 1.3m SYSTEM TOOLS

Introduction
Systemd is an init system and system manager that is widely becoming the new standard for Linux
machines. While there are considerable opinions about whether systemd is an improvement over the
traditional SysV init systems it is replacing, the majority of distributions plan to adopt it or have already
done so.

Due to its heavy adoption, familiarizing yourself with systemd is well worth the trouble, as it will make
administering servers considerably easier. Learning about and utilizing the tools and daemons that
comprise systemd will help you better appreciate the power, flexibility, and capabilities it provides, or at
least help you to do your job with minimal hassle.

In this guide, we will be discussing the systemctl command, which is the central management tool for
controlling the init system. We will cover how to manage services, check statuses, change system states,
and work with the configuration files.

Please note that although systemd has become the default init system for many Linux distributions, it isn’t
implemented universally across all distros. As you go through this tutorial, if your terminal outputs the error
bash: systemctl is not installed then it is likely that your machine has a different init system
installed.

Service Management
The fundamental purpose of an init system is to initialize the components that must be started after the
Linux kernel is booted (traditionally known as "userland" components). The init system is also used to
manage services and daemons for the server at any point while the system is running. With that in mind,
we will start with some simple service management operations.

�

Contents

Service Management

System State Overview

Unit Management

Editing Unit Files

Adjusting the System
State (Runlevel) with
Targets

Conclusion

Mark as Complete

https://www.digitalocean.com/
https://www.digitalocean.com/community/auth/digitalocean?display=sessionless+register
https://www.digitalocean.com/community/auth/digitalocean
https://www.digitalocean.com/community
https://www.digitalocean.com/community/tutorials
https://www.digitalocean.com/community/questions
https://www.digitalocean.com/community/projects
https://www.meetup.com/pro/digitalocean/?utm_source=do_community
https://www.digitalocean.com/community/users/jellingwood
https://www.digitalocean.com/community/users/jellingwood
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units#
https://www.digitalocean.com/community/tags/system-tools?type=tutorials

In systemd , the target of most actions are "units", which are resources that systemd knows how to
manage. Units are categorized by the type of resource they represent and they are defined with files
known as unit files. The type of each unit can be inferred from the suffix on the end of the file.

For service management tasks, the target unit will be service units, which have unit files with a suffix of
.service . However, for most service management commands, you can actually leave off the .service
suffix, as systemd is smart enough to know that you probably want to operate on a service when using
service management commands.

Starting and Stopping Services
To start a systemd service, executing instructions in the service's unit file, use the start command. If
you are running as a non-root user, you will have to use sudo since this will affect the state of the
operating system:

sudo systemctl start application.service

As we mentioned above, systemd knows to look for *.service files for service management
commands, so the command could just as easily be typed like this:

sudo systemctl start application

Although you may use the above format for general administration, for clarity, we will use the .service
suffix for the remainder of the commands to be explicit about the target we are operating on.

To stop a currently running service, you can use the stop command instead:

sudo systemctl stop application.service

Restarting and Reloading
To restart a running service, you can use the restart command:

sudo systemctl restart application.service

If the application in question is able to reload its configuration files (without restarting), you can issue the
reload command to initiate that process:

sudo systemctl reload application.service

If you are unsure whether the service has the functionality to reload its configuration, you can issue the
reload-or-restart command. This will reload the configuration in-place if available. Otherwise, it will
restart the service so the new configuration is picked up:

sudo systemctl reload-or-restart application.service

Enabling and Disabling Services
The above commands are useful for starting or stopping commands during the current session. To tell
systemd to start services automatically at boot, you must enable them.
To start a service at boot, use the enable command:

sudo systemctl enable application.service

This will create a symbolic link from the system's copy of the service file (usually in
/lib/systemd/system or /etc/systemd/system) into the location on disk where systemd looks for
autostart files (usually /etc/systemd/system/some_target.target.wants . We will go over what a
target is later in this guide).

To disable the service from starting automatically, you can type:

sudo systemctl disable application.service

This will remove the symbolic link that indicated that the service should be started automatically.

Keep in mind that enabling a service does not start it in the current session. If you wish to start the service
and enable it at boot, you will have to issue both the start and enable commands.

Checking the Status of Services
To check the status of a service on your system, you can use the status command:

systemctl status application.service

This will provide you with the service state, the cgroup hierarchy, and the first few log lines.

For instance, when checking the status of an Nginx server, you may see output like this:

This gives you a nice overview of the current status of the application, notifying you of any problems and
any actions that may be required.

There are also methods for checking for specific states. For instance, to check to see if a unit is currently
active (running), you can use the is-active command:

systemctl is-active application.service

This will return the current unit state, which is usually active or inactive . The exit code will be "0" if it
is active, making the result simpler to parse programmatically.
To see if the unit is enabled, you can use the is-enabled command:

systemctl is-enabled application.service

This will output whether the service is enabled or disabled and will again set the exit code to "0" or "1"
depending on the answer to the command question.

A third check is whether the unit is in a failed state. This indicates that there was a problem starting the
unit in question:

● nginx.service - A high performance web server and a reverse proxy server
 Loaded: loaded (/usr/lib/systemd/system/nginx.service; enabled; vendor preset: disabled)

 Active: active (running) since Tue 2015-01-27 19:41:23 EST; 22h ago

 Main PID: 495 (nginx)

 CGroup: /system.slice/nginx.service

 !"495 nginx: master process /usr/bin/nginx -g pid /run/nginx.pid; error_log stderr;
 #"496 nginx: worker process
Jan 27 19:41:23 desktop systemd[1]: Starting A high performance web server and a reverse proxy server...

Jan 27 19:41:23 desktop systemd[1]: Started A high performance web server and a reverse proxy server.

systemctl is-failed application.service

This will return active if it is running properly or failed if an error occurred. If the unit was intentionally
stopped, it may return unknown or inactive . An exit status of "0" indicates that a failure occurred and
an exit status of "1" indicates any other status.

System State Overview
The commands so far have been useful for managing single services, but they are not very helpful for
exploring the current state of the system. There are a number of systemctl commands that provide this
information.

Listing Current Units
To see a list of all of the active units that systemd knows about, we can use the list-units command:

systemctl list-units

This will show you a list of all of the units that systemd currently has active on the system. The output will
look something like this:

The output has the following columns:

UNIT: The systemd unit name

LOAD: Whether the unit's configuration has been parsed by systemd . The configuration of loaded
units is kept in memory.

ACTIVE: A summary state about whether the unit is active. This is usually a fairly basic way to tell if
the unit has started successfully or not.

SUB: This is a lower-level state that indicates more detailed information about the unit. This often
varies by unit type, state, and the actual method in which the unit runs.

DESCRIPTION: A short textual description of what the unit is/does.

Since the list-units command shows only active units by default, all of the entries above will show
"loaded" in the LOAD column and "active" in the ACTIVE column. This display is actually the default
behavior of systemctl when called without additional commands, so you will see the same thing if you
call systemctl with no arguments:

systemctl

We can tell systemctl to output different information by adding additional flags. For instance, to see all
of the units that systemd has loaded (or attempted to load), regardless of whether they are currently
active, you can use the --all flag, like this:

systemctl list-units --all

UNIT LOAD ACTIVE SUB DESCRIPTION

atd.service loaded active running ATD daemon

avahi-daemon.service loaded active running Avahi mDNS/DNS-SD Stack

dbus.service loaded active running D-Bus System Message Bus

dcron.service loaded active running Periodic Command Scheduler

dkms.service loaded active exited Dynamic Kernel Modules System

getty@tty1.service loaded active running Getty on tty1

. . .

This will show any unit that systemd loaded or attempted to load, regardless of its current state on the
system. Some units become inactive after running, and some units that systemd attempted to load may
have not been found on disk.

You can use other flags to filter these results. For example, we can use the --state= flag to indicate the
LOAD, ACTIVE, or SUB states that we wish to see. You will have to keep the --all flag so that
systemctl allows non-active units to be displayed:

systemctl list-units --all --state=inactive

Another common filter is the --type= filter. We can tell systemctl to only display units of the type we
are interested in. For example, to see only active service units, we can use:

systemctl list-units --type=service

Listing All Unit Files
The list-units command only displays units that systemd has attempted to parse and load into
memory. Since systemd will only read units that it thinks it needs, this will not necessarily include all of
the available units on the system. To see every available unit file within the systemd paths, including
those that systemd has not attempted to load, you can use the list-unit-files command instead:

systemctl list-unit-files

Units are representations of resources that systemd knows about. Since systemd has not necessarily
read all of the unit definitions in this view, it only presents information about the files themselves. The
output has two columns: the unit file and the state.

UNIT FILE STATE

proc-sys-fs-binfmt_misc.automount static

dev-hugepages.mount static

dev-mqueue.mount static

proc-fs-nfsd.mount static

proc-sys-fs-binfmt_misc.mount static

sys-fs-fuse-connections.mount static

sys-kernel-config.mount static

sys-kernel-debug.mount static

tmp.mount static

var-lib-nfs-rpc_pipefs.mount static

org.cups.cupsd.path enabled

. . .

The state will usually be "enabled", "disabled", "static", or "masked". In this context, static means that the
unit file does not contain an "install" section, which is used to enable a unit. As such, these units cannot be
enabled. Usually, this means that the unit performs a one-off action or is used only as a dependency of
another unit and should not be run by itself.

We will cover what "masked" means momentarily.

Unit Management
So far, we have been working with services and displaying information about the unit and unit files that
systemd knows about. However, we can find out more specific information about units using some
additional commands.

Displaying a Unit File
To display the unit file that systemd has loaded into its system, you can use the cat command (this was
added in systemd version 209). For instance, to see the unit file of the atd scheduling daemon, we
could type:

systemctl cat atd.service

[Unit]

Description=ATD daemon

[Service]

Type=forking

ExecStart=/usr/bin/atd

[Install]

WantedBy=multi-user.target

The output is the unit file as known to the currently running systemd process. This can be important if
you have modified unit files recently or if you are overriding certain options in a unit file fragment (we will
cover this later).

Displaying Dependencies
To see a unit's dependency tree, you can use the list-dependencies command:

systemctl list-dependencies sshd.service

This will display a hierarchy mapping the dependencies that must be dealt with in order to start the unit in
question. Dependencies, in this context, include those units that are either required by or wanted by the
units above it.

sshd.service

!"system.slice
#"basic.target
 !"microcode.service
 !"rhel-autorelabel-mark.service
 !"rhel-autorelabel.service
 !"rhel-configure.service
 !"rhel-dmesg.service
 !"rhel-loadmodules.service
 !"paths.target
 !"slices.target
. . .

The recursive dependencies are only displayed for .target units, which indicate system states. To
recursively list all dependencies, include the --all flag.

To show reverse dependencies (units that depend on the specified unit), you can add the --reverse flag
to the command. Other flags that are useful are the --before and --after flags, which can be used to
show units that depend on the specified unit starting before and after themselves, respectively.

Checking Unit Properties
To see the low-level properties of a unit, you can use the show command. This will display a list of
properties that are set for the specified unit using a key=value format:

systemctl show sshd.service

If you want to display a single property, you can pass the -p flag with the property name. For instance, to
see the conflicts that the sshd.service unit has, you can type:

systemctl show sshd.service -p Conflicts

Conflicts=shutdown.target

Masking and Unmasking Units
We saw in the service management section how to stop or disable a service, but systemd also has the
ability to mark a unit as completely unstartable, automatically or manually, by linking it to /dev/null . This
is called masking the unit, and is possible with the mask command:

sudo systemctl mask nginx.service

This will prevent the Nginx service from being started, automatically or manually, for as long as it is
masked.

If you check the list-unit-files , you will see the service is now listed as masked:

systemctl list-unit-files

. . .

kmod-static-nodes.service static

ldconfig.service static

mandb.service static

messagebus.service static

nginx.service masked

quotaon.service static

rc-local.service static

rdisc.service disabled

rescue.service static

. . .

If you attempt to start the service, you will see a message like this:

sudo systemctl start nginx.service

Failed to start nginx.service: Unit nginx.service is masked.

To unmask a unit, making it available for use again, simply use the unmask command:

Id=sshd.service

Names=sshd.service

Requires=basic.target

Wants=system.slice

WantedBy=multi-user.target

Conflicts=shutdown.target

Before=shutdown.target multi-user.target

After=syslog.target network.target auditd.service systemd-journald.socket basic.target system.slice

Description=OpenSSH server daemon

. . .

sudo systemctl unmask nginx.service

This will return the unit to its previous state, allowing it to be started or enabled.

Editing Unit Files
While the specific format for unit files is outside of the scope of this tutorial, systemctl provides built-in
mechanisms for editing and modifying unit files if you need to make adjustments. This functionality was
added in systemd version 218.

The edit command, by default, will open a unit file snippet for the unit in question:

sudo systemctl edit nginx.service

This will be a blank file that can be used to override or add directives to the unit definition. A directory will
be created within the /etc/systemd/system directory which contains the name of the unit with .d
appended. For instance, for the nginx.service , a directory called nginx.service.d will be created.

Within this directory, a snippet will be created called override.conf . When the unit is loaded, systemd
will, in memory, merge the override snippet with the full unit file. The snippet's directives will take
precedence over those found in the original unit file.

If you wish to edit the full unit file instead of creating a snippet, you can pass the --full flag:

sudo systemctl edit --full nginx.service

This will load the current unit file into the editor, where it can be modified. When the editor exits, the
changed file will be written to /etc/systemd/system , which will take precedence over the system's unit
definition (usually found somewhere in /lib/systemd/system).

To remove any additions you have made, either delete the unit's .d configuration directory or the
modified service file from /etc/systemd/system . For instance, to remove a snippet, we could type:

sudo rm -r /etc/systemd/system/nginx.service.d

To remove a full modified unit file, we would type:

sudo rm /etc/systemd/system/nginx.service

After deleting the file or directory, you should reload the systemd process so that it no longer attempts to
reference these files and reverts back to using the system copies. You can do this by typing:

sudo systemctl daemon-reload

Adjusting the System State (Runlevel) with Targets
Targets are special unit files that describe a system state or synchronization point. Like other units, the files
that define targets can be identified by their suffix, which in this case is .target . Targets do not do much
themselves, but are instead used to group other units together.

This can be used in order to bring the system to certain states, much like other init systems use runlevels.
They are used as a reference for when certain functions are available, allowing you to specify the desired
state instead of the individual units needed to produce that state.

For instance, there is a swap.target that is used to indicate that swap is ready for use. Units that are
part of this process can sync with this target by indicating in their configuration that they are WantedBy=
or RequiredBy= the swap.target . Units that require swap to be available can specify this condition
using the Wants= , Requires= , and After= specifications to indicate the nature of their relationship.

Getting and Setting the Default Target
The systemd process has a default target that it uses when booting the system. Satisfying the cascade of
dependencies from that single target will bring the system into the desired state. To find the default target
for your system, type:

systemctl get-default

multi-user.target

If you wish to set a different default target, you can use the set-default . For instance, if you have a
graphical desktop installed and you wish for the system to boot into that by default, you can change your
default target accordingly:

sudo systemctl set-default graphical.target

Listing Available Targets
You can get a list of the available targets on your system by typing:

systemctl list-unit-files --type=target

Unlike runlevels, multiple targets can be active at one time. An active target indicates that systemd has
attempted to start all of the units tied to the target and has not tried to tear them down again. To see all of
the active targets, type:

systemctl list-units --type=target

Isolating Targets
It is possible to start all of the units associated with a target and stop all units that are not part of the
dependency tree. The command that we need to do this is called, appropriately, isolate . This is similar
to changing the runlevel in other init systems.

For instance, if you are operating in a graphical environment with graphical.target active, you can
shut down the graphical system and put the system into a multi-user command line state by isolating the
multi-user.target . Since graphical.target depends on multi-user.target but not the other
way around, all of the graphical units will be stopped.

You may wish to take a look at the dependencies of the target you are isolating before performing this
procedure to ensure that you are not stopping vital services:

systemctl list-dependencies multi-user.target

When you are satisfied with the units that will be kept alive, you can isolate the target by typing:

sudo systemctl isolate multi-user.target

Justin Ellingwood Upvote (124) � Subscribe Share

Using Shortcuts for Important Events
There are targets defined for important events like powering off or rebooting. However, systemctl also
has some shortcuts that add a bit of additional functionality.

For instance, to put the system into rescue (single-user) mode, you can just use the rescue command
instead of isolate rescue.target :

sudo systemctl rescue

This will provide the additional functionality of alerting all logged in users about the event.

To halt the system, you can use the halt command:

sudo systemctl halt

To initiate a full shutdown, you can use the poweroff command:

sudo systemctl poweroff

A restart can be started with the reboot command:

sudo systemctl reboot

These all alert logged in users that the event is occurring, something that simply running or isolating the
target will not do. Note that most machines will link the shorter, more conventional commands for these
operations so that they work properly with systemd .

For example, to reboot the system, you can usually type:

sudo reboot

Conclusion
By now, you should be familiar with some of the basic capabilities of the systemctl command that allow
you to interact with and control your systemd instance. The systemctl utility will be your main point of
interaction for service and system state management.

While systemctl operates mainly with the core systemd process, there are other components to the
systemd ecosystem that are controlled by other utilities. Other capabilities, like log management and
user sessions are handled by separate daemons and management utilities (journald / journalctl and
logind / loginctl respectively). Taking time to become familiar with these other tools and daemons will
make management an easier task.

�

https://www.digitalocean.com/community/users/jellingwood
https://www.digitalocean.com/community/users/jellingwood
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units#

New Droplets: More RAM, More SSD Storage, More Flexibility
New Droplets on DigitalOcean include 2x Memory for the same price, new High-CPU Optimized
Plans, and a new class of Flexible $15 plans. The $5 Droplet now has 1GB RAM and 25GB SSD.

READ ABOUT NEW DROPLETS AND PRICES

Related Tutorials

How To Configure OpenLDAP and Perform Administrative LDAP Tasks

How To Change Account Passwords on an OpenLDAP Server

How To Use LDIF Files to Make Changes to an OpenLDAP System

How To Manage and Use LDAP Servers with OpenLDAP Utilities

How To Use Vundle to Manage Vim Plugins on a Linux VPS

19 Comments

Leave a comment...

Log In to Comment

0 Thanks for this, very nice intro :)

There is a typo in

To see if the unit is enabled, you can use the is-enabled command:

systemctl is-active application.service

In the code block you mean is-enabled .

thedude February 2, 2015

1 Oops! Must have missed that one. Thanks for letting me know!

jellingwood MOD February 2, 2015

https://www.digitalocean.com/community/tutorials/how-to-configure-openldap-and-perform-administrative-ldap-tasks
https://www.digitalocean.com/community/tutorials/how-to-change-account-passwords-on-an-openldap-server
https://www.digitalocean.com/community/tutorials/how-to-use-ldif-files-to-make-changes-to-an-openldap-system
https://www.digitalocean.com/community/tutorials/how-to-manage-and-use-ldap-servers-with-openldap-utilities
https://www.digitalocean.com/community/tutorials/how-to-use-vundle-to-manage-vim-plugins-on-a-linux-vps
https://www.digitalocean.com/community/auth/digitalocean
https://www.digitalocean.com/community/users/thedude
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=27191
https://www.digitalocean.com/community/users/jellingwood
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=27215

0 Very useful introduction to systemd. Next time I start a CentOS 7 droplet it'll come in handy!

Under the target section "Getting and Setting the Default Target" is "mulit-user.target" a typo? Should it say
multi-user not mulit-user?

leakybocks February 17, 2015

0 @leakybocks: Thanks for the feedback!

And good eye. I've fixed that up. Let me know if you see anything else!

jellingwood MOD February 17, 2015

0 What difference between reboot and systemctl reboot ?

kein.1945 February 20, 2015

0 @kein.1945: On most systems with systemd , the reboot command will actually be replaced by a
symbolic link to the systemctl command, so effectively, they do the same thing. The only difference is
that if you call it with systemctl it might write a message to any logged in users immediately prior to
executing the reboot.

jellingwood MOD February 20, 2015

0 I was logged in with a different SSH user and haven't received any message when doing systemctl
reboot .

oviliz December 30, 2015

0 Thank you for clear explanation.

antiquity March 23, 2016

1 hi !
I have created a droplet with node and i want to create a service to start a node app on boot. However when i
launch my service i have that:
'systemctl: command not found'

how to install the package systemctl ?

nicolasliveris March 30, 2016

0 Thank you so much!

imewx October 22, 2016

0 Thanks for the tutorial

bechesa November 16, 2016

0 Thank you so much. Very clear!

kelousami February 16, 2017

0 Very useful ... ;but there does not seem to be a reference to:
rh March 14, 2017

https://www.digitalocean.com/community/users/leakybocks
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=28042
https://www.digitalocean.com/community/users/leakybocks
https://www.digitalocean.com/community/users/jellingwood
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=28043
https://www.digitalocean.com/community/users/kein-1945
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=28216
https://www.digitalocean.com/community/users/kein-1945
https://www.digitalocean.com/community/users/jellingwood
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=28263
https://www.digitalocean.com/community/users/oviliz
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=41623
https://www.digitalocean.com/community/users/antiquity
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=45043
https://www.digitalocean.com/community/users/nicolasliveris
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=45299
https://www.digitalocean.com/community/users/imewx
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=52298
https://www.digitalocean.com/community/users/bechesa
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=52995
https://www.digitalocean.com/community/users/kelousami
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=56062
https://www.digitalocean.com/community/users/rh
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=57237

systemctl daemon-reexec

to restart systemd

0 Thank you so much Jellinwood. The Tuto ist very clear and cool. About the thema Systemd, do you have
some Literary suggestion? what i mean is, more or extra deep information about. Thanks again!

pauloporto October 4, 2017

0 @pauloporto If you'd like to get more in-depth information about systemd, a good place to go is Lennart
Poettering's blog, the project's initial author and designer. He has some extensive essays on the internals
and philosophy behind the project.

You can find a list of his posts here. The first post regarding systemd is called Rethinking PID 1.
Afterwards, he has a series of posts on systemd for administrators, starting here and a series of posts on
systemd for developers starting here. There are quite a few additional posts about key features, etc. I
hope that helps!

jellingwood MOD October 5, 2017

0 Excellent article, Justin. Nice overview, compact & to the point. Thanks

ashokc November 24, 2017

0 Excellent info, thank you very much. Absolutely f*cked init system.

Babblo November 29, 2017

0 Very good tutorial on systemd and explanations appreciated. Thx!

ale633 December 10, 2017

0 Thanks Justin for such a nice tutorial. I was looking for beginner tutorial to understand systemctl and how it
works to familiarize beginner like me.

I've two boards on device B1 & B2. B1 is hosting the web ui and browser can access it via B2. B2 has simple
firewall service running which is routing packets to B1. Now I'm trying to solve a problem where nginx.conf on
B1 requires ssl certificate files which are generated by a different process running on B2. B2 has the location
/mnt/fromB1 mounted which is of B1. B2 process generates certificates and stores it at the mounted location
so nginx on B1 can use it. This is because I don't want to maintain two copies of same certificates.

Now the problem I'm facing is when B1 boots up the very first time and nginx is ready to start, it can't find the
certificates at the location and fail to launch. This is also preventing port 80 server instances not to start.

After reading your tutorial the solution I'm thinking is like I can add a service to start before nginx.service
where I'll just create dummy certificate so to allow nginx to launch. Later when B2 finish initialization and the
process is started it will overwrite my certificates. Though I don't know how to write a service to execute
openssl commands using the .service files.

I'm familiar with CentOS and I could have modified the nginx.initscript and executed openssl commands there
and then start nginx to solve this.

Appreciate any guidance in resolving this.

jdp12383 January 27, 2018

https://www.digitalocean.com/community/users/pauloporto
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=64834
https://www.digitalocean.com/community/users/pauloporto
http://0pointer.net/blog/archives.html
http://0pointer.net/blog/projects/systemd.html
http://0pointer.net/blog/projects/systemd-for-admins-1.html
http://0pointer.net/blog/projects/socket-activation.html
https://www.digitalocean.com/community/users/jellingwood
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=64858
https://www.digitalocean.com/community/users/ashokc
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=66022
https://www.digitalocean.com/community/users/babblo
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=66126
https://www.digitalocean.com/community/users/ale633
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=66391
https://www.digitalocean.com/community/users/jdp12383
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units?comment=67448

This work is licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

�
Copyright © 2018 DigitalOcean™ Inc.

Community Tutorials Questions Projects Tags Newsletter RSS �

Distros & One-Click Apps Terms, Privacy, & Copyright Security Report a Bug Write for DigitalOcean Shop

×Sign up for our newsletter. Get the latest tutorials on SysAdmin and open source topics.

Enter your email address Sign Up

https://www.digitalocean.com/community
https://www.digitalocean.com/community/tutorials
https://www.digitalocean.com/community/questions
https://www.digitalocean.com/community/projects
https://www.digitalocean.com/community/tags
https://www.digitalocean.com/community/newsletter
https://www.digitalocean.com/community/tutorials/feed
https://www.digitalocean.com/features/one-click-apps/
https://www.digitalocean.com/legal/terms/
https://www.digitalocean.com/security/
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units#
https://www.digitalocean.com/community/write-for-digitalocean
http://store.digitalocean.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/
javascript:;

