
Six Metrics for Measuring ZFS Pool
Performance Part 1
Sep 24, 2018 | Blog | 4 comments

The layout of a ZFS storage pool has a significant impact on system

performance under various workloads. Given the importance of picking the

right configuration for your workload and the fact that making changes to an

in-use ZFS pool is far from trivial, it is important for an administrator to

understand the mechanics of pool performance when designing a storage

system.

To quantify pool performance, we will consider six primary metrics:

Read I/O operations per second (IOPS)

Write IOPS

Streaming read speed

Streaming write speed

Storage space efficiency (usable capacity after parity versus total raw

capacity)

Fault tolerance (maximum number of drives that can fail before data loss)

For the sake of comparison, we’ll use an example system with 12 drives, each

one sized at 6TB, and say that each drive does 100MB/s streaming reads and

writes and can do 250 read and write IOPS. We will visualize how the data is

Storage ć Servers ć Solutions ć Partners ć Support ć Blog

Resources ć Company ć

spread across the drives by writing 12 multi-colored blocks, shown below.

The blocks are written to the pool starting with the brown block on the left

(number one), and working our way to the pink block on the right (number 12).

Note that when we calculate data rates and IOPS values for the example

system, they are only approximations. Many other factors can impact pool

access speeds for better (compression, caching) or worse (poor CPU

performance, not enough memory).

There is no single configuration that maximizes all six metrics. Like so many

things in life, our objective is to find an appropriate balance of the metrics to

match a target workload. For example, a cold-storage backup system will

likely want a pool configuration that emphasizes usable storage space and

fault tolerance over the other data-rate focused metrics.

Let’s start with a quick review of ZFS storage pools before diving into specific

configuration options. ZFS storage pools are comprised of one or more virtual

devices, or vdevs. Each vdev is comprised of one or more storage providers,

typically physical hard disks. All disk-level redundancy is configured at the

vdev level. That is, the RAID layout is set on each vdev as opposed to on the

storage pool. Data written to the storage pool is then striped across all the

vdevs. Because pool data is striped across the vdevs, the loss of any one

vdev means total pool failure. This is perhaps the single most important fact

to keep in mind when designing a ZFS storage system. We will circle back to

this point in the next post, but keep it in mind as we go through the vdev

configuration options.

Because storage pools are made up of one or more vdevs with the pool data

striped over the top, we’ll take a look at pool configuration in terms of various

vdev configurations. There are three basic vdev configurations: striping,

mirroring, and RAIDZ (which itself has three different varieties). The first

section will cover striped and mirrored vdevs in this post; the second post will

cover RAIDZ and some example scenarios.

Striped vdev

A striped vdev is the simplest configuration. Each vdev consists of a single

disk with no redundancy. When several of these single-disk, striped vdevs are

combined into a single storage pool, the total usable storage space would be

the sum of all the drives. When you write data to a pool made of striped

vdevs, the data is broken into small chunks called “blocks” and distributed

across all the disks in the pool. The blocks are written in “round-robin”

sequence, meaning after all the disks receive one row of blocks, called a

stripe, it loops back around and writes another stripe under the first. A striped

pool has excellent performance and storage space efficiency, but absolutely

zero fault tolerance. If even a single drive in the pool fails, the entire pool will

fail and all data stored on that pool will be lost.

The excellent performance of a striped pool comes from the fact that all of the

disks can work independently for all read and write operations. If you have a

bunch of small read or write operations (IOPS), each disk can work

independently to fetch the next block. For streaming reads and writes, each

disk can fetch the next block in line synchronized with its neighbors. For

example, if a given disk is fetching block n, its neighbor to the left can be

fetching block n-1, and its neighbor to the right can be fetching block n+1.

Therefore, the speed of all read and write operations as well as the quantity of

read and write operations (IOPS) on a striped pool will scale with the number

of vdevs. Note here that I said the speeds and IOPS scale with the number of

vdevs rather than the number of drives; there’s a reason for this and we’ll

cover it in the next post when we discuss RAID-Z.

Here’s a summary of the total pool performance (where N is the number of

disks in the pool):

N-wide striped:

Read IOPS: N * Read IOPS of a single drive

Write IOPS: N * Write IOPS of a single drive

Streaming read speed: N * Streaming read speed of a single drive

Streaming write speed: N * Streaming write speed of a single drive

Storage space efficiency: 100%

Fault tolerance: None!

Let’s apply this to our example system, configured with a 12-wide striped

pool:

12-wide striped:

Read IOPS: 3000

Write IOPS: 3000

Streaming read speed: 1200 MB/s

Streaming write speed: 1200 MB/s

Storage space efficiency: 72 TB

Fault tolerance: None!

Below is a visual depiction of our 12 rainbow blocks written to this pool

configuration:

The blocks are simply striped across the 12 disks in the pool. The LBA

column on the left stands for “Logical Block Address”. If we treat each disk as

a column in an array, each LBA would be a row. It’s also easy to see that if

any single disk fails, we would be missing a color in the rainbow and our data

would be incomplete. While this configuration has fantastic read and write

speeds and can handle a ton of IOPS, the data stored on the pool is very

vulnerable. This configuration is not recommended unless you’re comfortable

losing all of your pool’s data whenever any single drive fails.

Mirrored vdev

A mirrored vdev consists of two or more disks. A mirrored vdev stores an

exact copy of all the data written to it on each one of its drives. Traditional

RAID-1 mirrors usually only support two drive mirrors, but ZFS allows for

more drives per mirror to increase redundancy and fault tolerance. All disks in

a mirrored vdev have to fail for the vdev, and thus the whole pool, to fail. Total

storage space will be equal to the size of a single drive in the vdev. If you’re

using mismatched drive sizes in your mirrors, the total size will be that of the

smallest drive in the mirror.

Streaming read speeds and read IOPS on a mirrored vdev will be faster than

write speeds and IOPS. When reading from a mirrored vdev, the drives can

“divide and conquer” the operations, similar to what we saw above in the

striped pool. This is because each drive in the mirror has an identical copy of

the data. For write operations, all of the drives need to write a copy of the

data, so the mirrored vdev will be limited to the streaming write speed and

IOPS of a single disk.

Here’s a summary:

N-way mirror:

Read IOPS: N * Read IOPS of a single drive

Write IOPS: Write IOPS of a single drive

Streaming read speed: N * Streaming read speed of a single drive

Streaming write speed: Streaming write speed of a single drive

Storage space efficiency: 50% for 2-way, 33% for 3-way, 25% for 4-way,

etc. [(N-1)/N]

Fault tolerance: 1 disk per vdev for 2-way, 2 for 3-way, 3 for 4-way, etc. [N-

1]

For our first example configuration, let’s do something ridiculous and create a

12-way mirror. ZFS supports this kind of thing, but your management

probably will not.

1x 12-way mirror:

Read IOPS: 3000

Write IOPS: 250

Streaming read speed: 1200 MB/s

Streaming write speed: 100 MB/s

Storage space efficiency: 8.3% (6 TB)

Fault tolerance: 11

Let’s look at this configuration visually:

As we can clearly see from the diagram, every single disk in the vdev gets a

full copy of our rainbow data. The chainlink icons between the disk labels in

the column headers indicate the disks are part of a single vdev. We can lose

up to 11 disks in this vdev and still have a complete rainbow. Of course, the

data takes up far too much room on the pool, occupying a full 12 LBAs in the

data array.

Obviously, this is far from the best use of 12 drives. Let’s do something a little

more practical and configure the pool with the ZFS equivalent of RAID-10.

We’ll configure six 2-way mirror vdevs. ZFS will stripe the data across all 6 of

the vdevs. We can use the work we did in the striped vdev section to

determine how the pool as a whole will behave. Let’s first calculate the

performance per vdev, then we can work on the full pool:

1x 2-way mirror:

Read IOPS: 500

Write IOPS: 250

Streaming read speed: 200 MB/s

Streaming write speed: 100 MB/s

Storage space efficiency: 50% (6 TB)

Fault tolerance: 1

Now we can pretend we have 6 drives with the performance statistics listed

above and run them through our striped vdev performance calculator to get

the total pool’s performance:

6x 2-way mirror:

Read IOPS: 3000

Write IOPS: 1500

Streaming read speed: 1200 MB/s

Streaming write speed: 600 MB/s

Storage space efficiency: 50% (36 TB)

Fault tolerance: 1 per vdev, 6 total

Again, we will examine the configuration from a visual perspective:

Each vdev gets a block of data and ZFS writes that data to all of (or in this

case, both of) the disks in the mirror. As long as we have at least one

functional disk in each vdev, we can retrieve our rainbow. As before, the chain

link icons denote the disks are part of a single vdev. This configuration

emphasizes performance over raw capacity but doesn’t totally disregard fault

tolerance as our striped pool did. It’s a very popular configuration for systems

that need a lot of fast I/O. Let’s look at one more example configuration using

four 3-way mirrors. We’ll skip the individual vdev performance calculation and

go straight to the full pool:

4x 3-way mirror:

Read IOPS: 3000

Write IOPS: 1000

Streaming read speed: 1200 MB/s

Streaming write speed: 400 MB/s

Storage space efficiency: 33% (24 TB)

Fault tolerance: 2 per vdev, 8 total

While we have sacrificed some write performance and capacity, the pool is

now extremely fault tolerant. This configuration is probably not practical for

most applications and it would make more sense to use lower fault tolerance

and set up an offsite backup system.

Striped and mirrored vdevs are fantastic for access speed performance, but

they either leave you with no redundancy whatsoever or impose at least a

50% penalty on the total usable space of your pool. In the next post, we will

cover RAIDZ, which lets you keep data redundancy without sacrificing as

much storage space efficiency. We’ll also look at some example workload

scenarios and decide which layout would be the best fit for each.

Jason Rose, Sales Engineer

4 Comments
David Still on September 26, 2018 at 10:23 am

When will Part 2 be posted?

Reply

Joon Lee on October 1, 2018 at 12:25 pm

This week!

Reply

hovnocuc on October 2, 2018 at 9:45 pm

Are the streaming read speeds correct? IMHO they cannot be

better than 1200 MB/s. And write speed is also off for 6x2way

mirror.

Reply

Joon Lee on October 3, 2018 at 10:27 am

Corrected!

Reply

Follow Us

C Facebook 3k Followers

D Twitter 4.5k Followers

* Google+ 897 Followers

0 YouTube 2.4k Followers

5 LinkedIn 2.4k Followers

 13.3k Follows

Next »

Recent Popular Tags

LISA 2018 Recap

November 2, 2018

MeetBSD 2018: The Ultimate Hallway Track

October 29, 2018

Introducing the Asigra TrueNAS Backup Appliance

October 23, 2018

Ohio LinuxFest 2018 Recap

October 22, 2018

Silicon Valley Veteran Morgan Littlewood Joins iXsystems

as Senior Vice President, Product Management and

Business...

October 9, 2018

Read Our 127

Trusted Reviews

powered by

©Copyright 2018 iXsystems, Inc.| All Rights Reserved | Privacy Policy | All trademarks appearing

herein are subject to the terms of the iXsystems, Inc. Trademark Policy

õõ öö øø ĀĀ

