
Six Metrics for Measuring ZFS Pool
Performance Part 2
Oct 2, 2018 | Blog | 5 comments

In the first post, we discussed the importance of planning the ZFS pool layout

which has a huge impact on how the system performs. To quantify this

performance, we are looking at six key metrics:

Read I/O operations per second (IOPS)

Write IOPS

Streaming read speed

Streaming write speed

Storage space efficiency (usable space after parity/total raw space)

Fault tolerance (maximum number of drives that can fail before data loss)

For the sake of comparison, we are using an example system with 12 drives.

Each drive has a capacity of 6TB, is capable of 100MB/s streaming reads and

writes, and can do 250 read and write IOPS. Let’s pick up where we left off

and dive into RAID-Z.

RAIDZ vdev

RAIDZ is comparable to traditional RAID-5 and RAID-6. RAIDZ comes in three

flavors: RAIDZ1, Z2, and Z3, where Z1 uses single parity, Z2 uses double

Storage ć Servers ć Solutions ć Partners ć Support ć Blog

Resources ć Company ć

parity, and Z3 uses triple parity. When data is written to a RAIDZ vdev, it is

striped across the disks but ZFS adds in parity information. This means we

have a little bit more stuff to store on the disk, but in return, we can recover

from a certain number of drive failures in the vdev. The parity information on

each stripe is computed from the data written to that stripe. If a drive fails, we

can reverse the formula of that computation in order to recover the missing

data. RAIDZ1 adds one sector of parity data per stripe and can recover from a

single drive failure per vdev. RAIDZ2 and Z3 add two and three sectors per

stripe, and can recover from two and three drive failures per vdev,

respectively.

For RAIDZ performance, the terms parity disks and data disks refer to the

parity level (1 for Z1, 2 for Z2, and 3 for Z3; we’ll call the parity level p) and

vdev width (the number of disks in the vdev, which we’ll call N) minus p. The

effective storage space in a RAIDZ vdev is equal to the capacity of a single

disk times the number of data disks in the vdev. If you’re using mismatched

disk sizes, it’s the size of the smallest disk times the number of data disks.

Fault tolerance per vdev is equal to the parity level of that vdev.

Measuring I/O performance on RAIDZ is a bit trickier than our previous

examples. ZFS breaks write data into pieces called blocks and stripes them

across the vdevs. Each vdev breaks those blocks into even smaller chunks

called sectors. For striped vdevs, the sectors are simply written sequentially

to the drive. For mirrored vdevs, all sectors are written sequentially to each

disk. On RAIDZ vdevs however, ZFS has to add additional sectors for the

parity information. When a RAIDZ vdev gets a block to write out, it will divide

that block into sectors, compute all the parity information, and hand each disk

either a set of data sectors or a set of parity sectors. ZFS ensures that there

are p parity sectors for each stripe written to the RAIDZ vdev.

I/O operations on a RAIDZ vdev need to work with a full block, so each disk in

the vdev needs to be synchronized and operating on the sectors that make up

that block. No other operation can take place on that vdev until all the disks

have finished reading from or writing to those sectors. Thus, IOPS on a RAIDZ

vdev will be that of a single disk. While the number of IOPS is limited, the

streaming speeds (both read and write) will scale with the number of data

disks. Each disk needs to be synchronized in its operations, but each disk is

still reading/writing unique data and will thus add to the streaming speeds,

minus the parity level as reading/writing this data doesn’t add anything new to

the data stream.

Because a RAIDZ vdev splits individual blocks into sector-sized chunks, our

rainbow-colored blocks example needs some tweaking. Each individual color

needs to be broken up into sectors. To represent the division of a single block

into multiple sectors, we’ll use a single-color gradient, an example of which is

shown below:

This single data block is shown as continuing on past its 18th sector with the

ellipsis at the end of the block. We have represented it this way because ZFS

uses variable block sizes when writing data to vdevs. This has important

implications in ZFS deployments, particularly for RAIDZ configurations. For

now, let’s look at general RAIDZ performance. Here’s a summary:

N-wide RAIDZ, parity level p:

Read IOPS: Read IOPS of single drive

Write IOPS: Write IOPS of single drive

Streaming read speed: (N – p) * Streaming read speed of single drive

Streaming write speed: (N – p) * Streaming write speed of single drive

Storage space efficiency: (N – p)/N

Fault tolerance: 1 disk per vdev for Z1, 2 for Z2, 3 for Z3 [p]

We’ll look at three example RAIDZ configurations. The first will use a single

vdev: a 12-wide Z3 array.

1x 12-wide Z3:

Read IOPS: 250

Write IOPS: 250

Streaming read speed: 900 MB/s

Streaming write speed: 900 MB/s

Storage space efficiency: 75% (54 TB)

Fault tolerance: 3

Based on these numbers, this looks like it could be a decent option unless

you need to handle lots of IOPS. Below is a visual depiction of a single block

of data being written to a pool with this configuration. The data sectors are

colored in shades of red and the parity sectors are grey.

In this diagram, we can see that each stripe of data on the vdev gets its own

set of parity sectors. Each of these parity sectors are unique, even on a given

stripe, which is why they are labeled “P1a”, “P1b”, etc. If each parity sector in

a given stripe was identical, having multiple copies would not provide us any

more information than having a single copy of that parity sector! In that case,

we wouldn’t have enough information to recover data after multiple drive

failures. With this RAIDZ3 configuration, we can lose three of the disks with

data sectors on them and use the parity information to recover the data from

those dead drives. If we lose drives with parity sectors, we can simply

recompute the missing parity data.

Now let’s look at configuring two vdevs, each a 6-wide Z2 array. I’ll skip the

single vdev stats and jump right to the full pool stats:

2x 6-wide Z2:

Read IOPS: 500

Write IOPS: 500

Streaming read speed: 800 MB/s

Streaming write speed: 800 MB/s

Storage space efficiency: 66.7% (48 TB)

Fault tolerance: 2 per vdev, 4 total

This configuration sacrifices a bit of streaming speed and some capacity to

double the IOPS. To visualize this configuration, we will write two blocks of

data to the pool. Each Z2 vdev will get a single block that gets split into

sectors. As above, the data sectors are shades of red and green, and the

parity sectors are grey.

As in the Z3 diagram, each data stripe gets its own pair of unique parity

sectors. The first data block is written to the first vdev and the second data

block is written to the second vdev. A third data block would again be written

to the first vdev, and so on.

The last configuration uses four vdevs, each a 3-wide Z1 array.

4x 3-wide Z1:

Read IOPS: 1000

Write IOPS: 1000

Streaming read speed: 800 MB/s

Streaming write speed: 800 MB/s

Storage space efficiency: 66.7% (48 TB)

Fault tolerance: 1 per vdev, 4 total

This configuration sacrifices some of its fault tolerance to double the IOPS.

For this diagram, we’ll write four blocks of data. Again, each vdev will get a

single block and split it into sectors.

Each stripe gets its own parity sector, but unlike the previous examples, we

only have a single parity sector per data stripe. This is why RAIDZ1 is not

highly fault tolerant and is thus not a recommended configuration for storing

mission-critical data.

I want to make a few quick points on fault tolerance and pool failure

probability before we move on. If a single vdev in a pool is lost, your data is

lost. The configurations we discussed above all use pools made up of

identical vdevs. Using identical vdevs is strongly recommended, but it is

possible to mismatch vdevs in a pool. For example, you could configure an

11-wide Z3 vdev and add a single striped vdev as the 12th drive in the pool.

This would not be smart. Your extremely fault-tolerant Z3 vdev now depends

on that single 12th drive to maintain your data. If that drive goes, your whole

pool is gone.

The question of translating per-vdev fault tolerance into total pool reliability is

more complicated than it might initially appear. For example, a 12-wide Z3

pool with 3 parity drives is statistically less likely to fail than a 2x 6-wide Z2

pool with 4 total parity drives. Our 6x 2-way mirror pool has 6 total parity

drives, but it’s far more likely to fail than either the Z3 or Z2 configurations.

The 4x 3-wide Z1 configuration has an even higher failure probability than the

mirrors. The moral is, don’t simply look at the total number of parity drives

and think “more is better”.

Examples by Workload

We now have some rough numbers to quantify pool performance based on its

configuration, but how do we translate that to real-world applications? This

can often be the more difficult part of the ZFS pool configuration question

because it requires an accurate understanding of the workload. Let’s take a

look at a few example scenarios and decide which configuration would be the

best fit for that given workload.

Scenario 1: Data backup system and low-access file share

We want to configure a ZFS storage system to house automated data

backups and to function as a file share for a small handful of users. Under this

workload, IOPS are likely not as important as streaming speeds. We’ll also

want good storage efficiency and good fault tolerance. Assuming the same

example 12-drive system, we might go with either the 2x 6-wide RAIDZ2

configuration or the 1x 12-wide RAIDZ3 setup. We can decide between these

two configurations based on how many users will be accessing the system

simultaneously (how many IOPS can we expect). If our backups hit the

system at midnight and during business hours we only have two or three

people connected to the file share, we can probably get away with the lower

IOPS Z3 configuration. If we have more users in the system or we have

backups hitting during business hours, it may be worth sacrificing some

capacity to get higher IOPS with the Z2 configuration.

Scenario 2: iSCSI host for database VM storage

We have several database VMs that will be using our system for storage. We’ll

serve up the storage with iSCSI and we need the data to move as quickly as

possible. The databases will be regularly backed up, so we aren’t terribly

concerned with data loss, but we don’t want a drive failure to halt all VM

operations while we restore from backup. The more VMs we are hosting, the

more IOPS the system will have to handle. The obvious choice here is a set of

mirrored vdevs. The more mirrors we have in the system, the more

performance we can expect. Even if a drive in the system fails, we can

recover quickly and with no downtime by swapping the drive and resilvering

the mirror. If we tried to use a Z2 or Z3 configuration to get some more

storage space from the system, VM performance would likely be poor due to

low pool IOPS.

Scenario 3: High-resolution video production work via file share

We have a group of video editors that need to work on high-resolution

footage stored on our system. They will be editing the footage directly from

the pool, as opposed to copying it to local storage first. Streaming speeds will

be very important as high-resolution video files can have gigantic bitrates. The

more editors we have, the more performance we’ll need. If we only have a

small handful of editors, we can probably get away with several RAIDZ2

vdevs, but as you add more editors, IOPS will become increasingly important

to support all their simultaneous IO work. At a certain point, Z2 will no longer

be worth its added capacity and a set of mirrored vdevs will make more

sense. That exact cutoff point will vary, but will likely be between 5 and 10

total editors working simultaneously.

There are two special vdev types that we have not discussed: an L2ARC and

a SLOG. These special vdevs can be added to a pool to function as a read

cache and a write cache, respectively. Typically, you would use an SSD for

these vdevs. You should consider adding an L2ARC if your workload

demands high read IOPS and a SLOG if your workload demands high write

IOPS. If you’re considering deploying a system with an L2ARC or a SLOG, I

would encourage you to contact a storage specialist at iXsystems.

ZFS storage pool configuration can certainly seem overwhelming, but that’s

because it offers so much flexibility to meet the needs of many different types

of workloads. Indeed, many other aspects of ZFS follow this trend: its

versatility can offer an enormous set of options and the simple task of

determining the best option can seem daunting at first glance. Thankfully,

once you dive into it, ZFS starts making sense fairly quickly. ZFS was

originally created to make the lives of storage administrators easier, and once

past the initial learning curve, it can do just that. Hopefully, this post and the

previous blog on ZFS performance has helped on that journey and you’re well

on your way to a successful ZFS deployment!

Lastly, click here to view our white paper on measuring ZFS pool

performance.

Jason Rose, Sales Engineer

5 Comments
Emi on October 2, 2018 at 9:27 pm

Nice write up, I especially liked the probability calculator part.

Thanks!

Reply

Dirk Achenbach on October 9, 2018 at 8:20 am

This is brilliant, many thanks.

Reply

Joon Lee on October 17, 2018 at 2:45 pm

Thank you for the support.

Reply

Jeff on October 12, 2018 at 5:05 pm

The performance comparisons are great; very useful. Consider

a downloadable PDF link for your writeup?

Reply

Joon Lee on October 17, 2018 at 2:46 pm

Click on the “white paper” link up above or go here:

https://static.ixsystems.co/uploads/2018/10/ZFS_Stor

age_Pool_Layout_White_Paper_WEB.pdf

Reply

Follow Us

C Facebook 3k Followers

D Twitter 4.5k Followers

* Google+ 897 Followers

0 YouTube 2.4k Followers

5 LinkedIn 2.4k Followers

 13.3k Follows

Recent Popular Tags

LISA 2018 Recap

November 2, 2018

MeetBSD 2018: The Ultimate Hallway Track

October 29, 2018

Introducing the Asigra TrueNAS Backup Appliance

October 23, 2018

Next »

Ohio LinuxFest 2018 Recap

October 22, 2018

Silicon Valley Veteran Morgan Littlewood Joins iXsystems

as Senior Vice President, Product Management and

Business...

October 9, 2018

Read Our 127

Trusted Reviews

powered by

©Copyright 2018 iXsystems, Inc.| All Rights Reserved | Privacy Policy | All trademarks appearing

herein are subject to the terms of the iXsystems, Inc. Trademark Policy

õõ öö øø ĀĀ

