
The Case For Using ZFS Compression

An absolutely killer feature of ZFS is the ability to add compression with little hassle. As we turn into 2018, there is an obvious new year’s

resolution: use ZFS compression. Combined with sparse volumes (ZFS thin provisioning) this is a must-do option to get more performance

and better disk space utilization. Many workloads work really well with ZFS compression. Overall, this is something we see far too many

users overlook when it can be an enormous benefit.

How to 6nd if you have ZFS compression enabled

For many ZFS environments, lz4 compression is the go-to solution. It is fast and gives a decent amount of benefit. Look at it as the minimal

tradeoff to get substantial gains. While there are some ZFS environments that default to lz4 compression, most will not have compression

enabled by default. We looked back on questions we received in 2017, and a common one was how to find if you have ZFS compression

enabled.

There are many ways you can do this, but the easiest is with “zfs get compression.” Here is an example of using that command:

By Patrick Kennedy - January 2, 2018

ZFS Compression Performance Lz4 Gzip 7 Off Time

https://www.servethehome.com/author/patrick/
https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Compression-Performance-lz4-gzip-7-off-Time.jpg

ZFS Get Compressratio And Compression

Along with “zfs get compression” another useful command is “zfs get compressratio” which shows the compression ratio. Note it is

“compress” not “compression” ratio here. These are two attributes that you will see on zpools/ zvols. You can also see that we have the

zvol’s (p3600R1/vm-203-disk-1) compression inherited from the zpool (p3600R1.) We suggest setting compression at the zpool ratio for

general purpose storage and then alter explicitly from there.

ZFS has a lot of attribute information that you can use “zfs get all” to lookup. Here is an example:

https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Get-Compressratio-and-Compression.jpg
https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Get-All.jpg

ZFS Get All

If you have zfs compression showing as “on”, and want to see if you are using lz4 already, then you can do a zpool get all and look for/ grep

feature@lz4_compress which should be active if you are using lz4 as the default:

https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Get-All.jpg

Zpool Get All

Either way, our resolution is to turn on zfs compression if at all possible.

How To Set ZFS Compression

We are going to suggest simply setting ZFS compression at the zpool level. That allows subsequent datasets to inherit compression making

it easy to maintain. To set the compression to lz4, we can use “zfs set compression=lz4”. Here is an example:

https://www.servethehome.com/wp-content/uploads/2018/01/zpool-Get-All.jpg

ZFS Set Compression

In the first zfs get compression command we see that compression is off by default. We use zfs set compression=lz4 on our

zpool (bulksata2) to turn compression on. We then verify that the compression is now set to lz4.

You will notice that the compression ratio is 1.00x which is essentially nothing. That is simply because we have not copied any data to the

new volume.

You can also use different algorithms such as gzip (e.g. gzip-7 that we are using in our next example.) If you have a pool that is for

incremental backups on a dedicated backup server, going the gzip route can make a lot of sense to save space if you do not want to turn on

deduplication.

ZFS Compression Impact

We took a 40GB Ubuntu 16.04.3 LTS VM volume (about 32GB of 40GB in-use) used for image caching and cloned a snapshot to “bulk

storage”. For us, that means the source was on two Intel Optane 900p 280GB NVMe drives and the destination was two Samsung PM963

960GB SSDs. These SSDs were configured as ZFS mirrors. Given the size of the VM, we wanted to create a bottleneck at the destination

while ensuring the source was many times faster than the destination.

First off, we wanted to see compression ratios. We know that compression=off gives us 1.00x compression since it is not compressed. Here

is what we saw with the lz4 compressed pool:

ZFS Get Compressratio Results LZ4

https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Set-Compression.jpg
https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Get-Compressratio-Results-LZ4.jpg

We got a 1.93x compression ratio with lz4 compression. That is good for near transparent performance. We took the exact same volume and

used gzip-7 just to show the compression ratio difference:

ZFS Get Compressratio Results Gzip 7

As you can see, we got a 2.27x compression ratio which is significantly better. We used gzip-7 since it is biased towards higher compression

ratios versus lower levels offered by gzip that are faster.

There was a cost, however.

With lz4 compression, the entire snapshot clone operation (NVMe to SATA) took about 10% of the dual Intel Xeon E5-2698 V4 system’s CPU

which was already running at 52% utilization. Using gzip-7 we saw utilization spike over 16% during the operation. As an additional data

point, this copy with compression=off pushed utilization up 8-9%. Here are the incremental average CPU utilization of these three

operations:

ZFS Compression Performance Lz4 Gzip 7 Off Average CPU Utilization

https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Get-Compressratio-Results-gzip-7.jpg
https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Compression-Performance-lz4-gzip-7-off-Average-CPU-utilization.jpg

In terms of the actual clone performance, the timings were close but there was a noticeable difference between these three options:

ZFS Compression Performance Lz4 Gzip 7 Off Time

Not only did lz4 use less CPU, but it did so over a shorter period of time.

We also were logging iowait while we were doing these operations. Since we were using a system with a ~52% base CPU load, which is

more akin to a running virtualization server, we wanted to see what the impact was on iowait since that is usually a parameter we want to

be minimized.

https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Compression-Performance-lz4-gzip-7-off-Time.jpg

ZFS Compression Performance Lz4 Gzip 7 Off Max Iowait

If you remember, we are doing this transfer from mirrored Intel Optane SSDs to mirrored Samsung SATA3 SSDs much as you would do if

you were cloning development VMs to lower-cost storage. We were debugging the impact of that cloning operation at the system level which

is why we were watching the iowait number. Through the ten runs we did, each time we had fairly consistent max iowait on a system which

was near 0% on the system otherwise.

To some compression=off may seem like the obvious choice for the highest performance, it is not. While we would prefer to use gzip for

better compression, lz4 provides “good enough” compression ratios at relatively lower performance impacts making it our current

recommendation.

Final Words

If you are starting the year and looking for a project, ensure that your ZFS storage is using lz4 compression. The fact that lz4 is a good

compromise between compression ratio and performance is well-known at this point. Using lz4 can provide both a performance and space-

saving benefit during some operations which makes it a great choice.

Even though lz4 ZFS compression is a well-known solution, over the 2017 holiday season we logged into no less than half a dozen servers

from other folks who were not using it on their zpools. Set compression=lz4 at the zpool level and allow data sets to inherit the

compression. You will be happy for this new year’s resolution that takes a few seconds and has tangible benefits.

https://www.servethehome.com/wp-content/uploads/2018/01/ZFS-Compression-Performance-lz4-gzip-7-off-Max-iowait.jpg

Test Con6guration Notes

Here is a quick overview of the test configuration for the above. We are becoming ZFS on Linux fans so we are using ZFS 0.7.2 on Debian.

System: Supermicro 2U Ultra

CPUs: 2x Intel Xeon E5-2698 V4

RAM: 256GB (8x 32GB) DDR4-2400 RDIMMS

OS SSDs: ZFS Mirror Intel DC S3610 480GB

Source SSD: ZFS Mirror Intel Optane 900p 280GB

Destination SSDs: ZFS Mirror Samsung PM963 960GB

Proxmox VE 5.1

Based on Debian Stretch 9.2

Kernel 4.13.3

QEMU 2.9.1

ZFS 0.7.2

Patrick Kennedy

http://www.servethehome.com

Patrick has been running STH since 2009 and covers a wide variety of SME, SMB, and SOHO IT topics. Patrick is a consultant in the technology

industry and has worked with numerous large hardware and storage vendors in the Silicon Valley. The goal of STH is simply to help users find some

information about server, storage and networking, building blocks. If you have any helpful information please feel free to post on the forums.

� � � �

https://www.servethehome.com/the-case-for-using-zfs-compression/servethehome
https://plus.google.com/u/0/+PatrickKennedy2
https://www.servethehome.com/the-case-for-using-zfs-compression/pjkenned
http://twitter.com/ServeTheHome
https://www.servethehome.com/author/patrick/
http://www.servethehome.com/

